3D Face Recognition Based on Depth and Intensity Gabor Features using Symbolic PCA and AdaBoost
نویسندگان
چکیده
Traditional 2D face recognition based on optical (intensity or color) images faces many challenges, such as illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the objective is to investigate what contributions depth and intensity information make to the solution of face recognition problem when expression and pose variations are taken into account, and a novel system is proposed for combining depth and intensity information in order to improve face recognition performance. In the proposed approach, local features based on Gabor wavelets are extracted from depth and intensity images, which are obtained from 3D data after fine alignment. Then a novel hierarchical selecting scheme embedded in symbolic principal component analysis (Symbolic PCA) and AdaBoost learning is proposed to select the most effective and most robust features and to construct a strong classifier. Experiments are performed on the three datasets, namely,Texas 3D face database, Bhosphorus 3D face database and CASIA 3D face database, which contain face images with complex variations, including expressions, poses and long time lapses between two scans. The experimental results demonstrate the enhanced effectiveness in the performance of the proposed method. Since most of the design processes are performed automatically, the proposed approach leads to a potential prototype design of an automatic face recognition system based on the combination of the depth and intensity information in face images.
منابع مشابه
3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier
Pioneer 2D face recognition based on intensity or color images encounters many challenges, like variation in illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the main objective is to analyze what contributions depth and intensity with texture information make to the solution of face reco...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کامل3D Face Recognition Using Radon Transform and Symbolic PCA
Three Dimensional (3D) human face recognition is emerging as a significant biometric technology. Research interest into 3D face recognition has increased during recent years due to availability of improved 3D acquisition devices and processing algorithms. A 3D face image is represented by 3D meshes or range images which contain depth information. Range images have several advantages over 2D int...
متن کاملPractical Aspects of Face Recognition
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been...
متن کاملMultimodal Face Recognition from Depth and Intensity Curvelet Features
This paper presents a face recognition based on the fusion of the intensity image and stereo depth map at the score level. The 3D surfaces are reconstructed from the stereo face images using stereo vision technique. The curvelet transform is a multiresolution method, which is used to extract features from depth and intensity images independently. Then, principal component analysis (PCA) is used...
متن کامل